Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 8 of 8 results
1.

Local negative feedback of Rac activity at the leading edge underlies a pilot pseudopod-like program for amoeboid cell guidance.

blue iLID HL-60 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
PLoS Biol, 25 Sep 2023 DOI: 10.1371/journal.pbio.3002307 Link to full text
Abstract: To migrate efficiently, neutrophils must polarize their cytoskeletal regulators along a single axis of motion. This polarization process is thought to be mediated through local positive feedback that amplifies leading edge signals and global negative feedback that enables sites of positive feedback to compete for dominance. Though this two-component model efficiently establishes cell polarity, it has potential limitations, including a tendency to "lock" onto a particular direction, limiting the ability of cells to reorient. We use spatially defined optogenetic control of a leading edge organizer (PI3K) to probe how neutrophil-like HL-60 cells balance "decisiveness" needed to polarize in a single direction with the flexibility needed to respond to new cues. Underlying this balancing act is a local Rac inhibition process that destabilizes the leading edge to promote exploration. We show that this local inhibition enables cells to process input signal dynamics, linking front stability and orientation to local temporal increases in input signals.
2.

Concept and considerations of a medical device: the active noise cancelling incubator.

blue CRY2/CIB1 iLID TULIP D. discoideum HL-60 MCF10A RAW264.7 Control of cytoskeleton / cell motility / cell shape
Front Pediatr, 3 Jul 2023 DOI: 10.3389/fcell.2023.1195806 Link to full text
Abstract: An increasingly 24/7 connected and urbanised world has created a silent pandemic of noise-induced hearing loss. Ensuring survival to children born (extremely) preterm is crucial. The incubator is a closed medical device, modifying the internal climate, and thus providing an environment for the child, as safe, warm, and comfortable as possible. While sound outside the incubator is managed and has decreased over the years, managing the noise inside the incubator is still a challenge.
3.

Cell protrusions and contractions generate long-range membrane tension propagation.

blue iLID HL-60 Control of cytoskeleton / cell motility / cell shape
Cell, 12 Jun 2023 DOI: 10.1016/j.cell.2023.05.014 Link to full text
Abstract: Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.
4.

Actuation of single downstream nodes in growth factor network steers immune cell migration.

blue CRY2/CIB1 iLID D. discoideum HL-60 RAW264.7 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Dev Cell, 22 May 2023 DOI: 10.1016/j.devcel.2023.04.019 Link to full text
Abstract: Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility. Second, activating Ras at the cell rear generated new protrusions, reversed pre-existing polarity, and steered sustained migration in neutrophils or murine RAW 264.7 macrophages. Third, recruiting a RasGAP, RASAL3, to cell fronts extinguished protrusions and changed migration direction. Remarkably, persistent RASAL3 recruitment at stable fronts abrogated directed migration in three different chemoattractant gradients. Fourth, local recruitment of the Ras-mTORC2 effector, Akt, in neutrophils or Dictyostelium amoebae generated new protrusions and rearranged pre-existing polarity. Overall, these optogenetic effects were mTORC2-dependent but relatively independent of PI3K. Thus, receptor-independent, local activations of classical growth-control pathways directly control actin assembly, cell shape, and migration modes.
5.

Mechanosensitive mTORC2 independently coordinates leading and trailing edge polarity programs during neutrophil migration.

blue iLID HL-60 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Mol Biol Cell, 1 Mar 2023 DOI: 10.1091/mbc.e22-05-0191 Link to full text
Abstract: By acting both upstream of and downstream from biochemical organizers of the cytoskeleton, physical forces function as central integrators of cell shape and movement. Here we use a combination of genetic, pharmacological, and optogenetic perturbations to probe the role of the conserved mechanosensitive mTOR complex 2 (mTORC2) programs in neutrophil polarity and motility. We find that the tension-based inhibition of leading-edge signals (Rac, F-actin) that underlies protrusion competition is gated by the kinase-independent role of the complex, whereas the regulation of RhoA and myosin II-based contractility at the trailing edge depend on mTORC2 kinase activity. mTORC2 is essential for spatial and temporal coordination of the front and back polarity programs for persistent migration under confinement. This mechanosensory pathway integrates multiple upstream signals, and we find that membrane stretch synergizes with biochemical co-input phosphatidylinositol (3,4,5)-trisphosphate to robustly amplify mTORC2 activation. Our results suggest that different signaling arms of mTORC2 regulate spatially and molecularly divergent cytoskeletal programs for efficient coordination of neutrophil shape and movement.
6.

Rac negative feedback links local PIP3 rate-of-change to dynamic control of neutrophil guidance.

blue iLID HL-60 Control of cytoskeleton / cell motility / cell shape Transgene expression
bioRxiv, 5 Jan 2023 DOI: 10.1101/2022.12.30.521706 Link to full text
Abstract: To migrate efficiently, neutrophils must polarize their cytoskeletal regulators along a single axis of motion. This polarization process is thought to be mediated through local positive feedback that amplifies leading edge signals and global negative feedback that enables sites of positive feedback to compete for dominance. Though this two-component model efficiently establishes cell polarity, it has potential limitations, including a tendency to “lock” onto a particular direction, limiting the ability of cells to reorient. We use spatially-defined optogenetic control of a leading edge organizer (PI3K) to probe how cells balance “decisiveness” needed to polarize in a single direction with the flexibility needed to respond to new cues. Underlying this balancing act is a local Rac inhibitor that destabilizes the leading edge to promote exploration. We show that this local inhibitor enables cells to process input signal dynamics, linking front stability and orientation to local temporal increases in input signals.
7.

mTORC2 coordinates the leading and trailing edge cytoskeletal programs during neutrophil migration.

blue iLID HL-60 Signaling cascade control
bioRxiv, 27 Mar 2022 DOI: 10.1101/2022.03.25.484773 Link to full text
Abstract: By acting both upstream and downstream of biochemical organizers of the cytoskeleton, physical forces function as central integrators of cell shape and movement. Here we use a combination of genetic, pharmacological, and optogenetic perturbations to probe the role of the conserved mechanoresponsive mTORC2 program in neutrophil polarity and motility. We find that the tension-based inhibition of leading edge signals (Rac, F-actin) that underlies protrusion competition is gated by the kinase-independent role of the complex, whereas the mTORC2 kinase arm is essential for regulation of Rho activity and Myosin II-based contraction at the trailing edge. Cells required mTORC2 for spatial and temporal coordination between the front and back polarity programs and persistent migration under confinement. mTORC2 is in a mechanosensory cascade, but membrane stretch did not suffice to stimulate mTORC2 unless the co-input PIP3 was also present. Our work suggests that different signalling arms of mTORC2 regulate spatially and molecularly divergent cytoskeletal programs allowing efficient coordination of neutrophil shape and movement.
8.

A module for Rac temporal signal integration revealed with optogenetics.

red PhyB/PIF6 HL-60 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
J Cell Biol, 7 Jul 2017 DOI: 10.1083/jcb.201604113 Link to full text
Abstract: Sensory systems use adaptation to measure changes in signaling inputs rather than absolute levels of signaling inputs. Adaptation enables eukaryotic cells to directionally migrate over a large dynamic range of chemoattractant. Because of complex feedback interactions and redundancy, it has been difficult to define the portion or portions of eukaryotic chemotactic signaling networks that generate adaptation and identify the regulators of this process. In this study, we use a combination of optogenetic intracellular inputs, CRISPR-based knockouts, and pharmacological perturbations to probe the basis of neutrophil adaptation. We find that persistent, optogenetically driven phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production results in only transient activation of Rac, a hallmark feature of adaptive circuits. We further identify the guanine nucleotide exchange factor P-Rex1 as the primary PIP3-stimulated Rac activator, whereas actin polymerization and the GTPase-activating protein ArhGAP15 are essential for proper Rac turnoff. This circuit is masked by feedback and redundancy when chemoattractant is used as the input, highlighting the value of probing signaling networks at intermediate nodes to deconvolve complex signaling cascades.
Submit a new publication to our database